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1 INTRODUCTION 

It has long been recognized by the Department of Defense's (DoD) 
software initiative that the future requirements for defense systems in the 1990's 
would exhibit the following characteristics among others. The systems will use 
multiprocessor, networked, and parallel architectures. The cost for developing, 
evolving, and maintaining defense software will have grown to become a principal 
factor in the determination of U.S. capabilities [LIE86]. The four technical 
solutions to controlling this growing software complexity proposed by DoD's 
software initiative are: 

1) Greater use of automation, 
2) Higher levels of abstraction, 
3) Reusability, and 
4) Rapid prototyping. 

The three major components of the software initiative currently being used 
by DoD to research and develop these solutions are: 

1) The Ada program, 
2) The STARS program, and 
3) The Software Engineering Institute. 

It has also been accepted in the communications industry that standards 
are required to govern the physical, electrical, and procedural characteristics of 
communication equipment [STA872]. Computer vendors, on the other hand, have 
traditionally attempted to monopolize their customers. DoD has recognized that 
systems produced by different vendors must be able to communicate with each 
other. Heterogeneous communication can be assured through the development of 
communication standards that are adhered to by all vendors producing systems for 
DoD. 

This report addresses the Ada programming language in relation to its use 
on systems that are parallel and distributed in nature, in particular, those which 
are not alike in their underlying architecture. This study examines what can be 
done to reduce the amount of time and cost of building real-time distributed 
heterogeneous systems using Ada. 



2 TYPES OF DISTRIBUTED SYSTEMS 

This section will discuss the similarities, variations, and characteristics of 
distributed systems. 

2.1  Conformance Types 

Table I delineates a list of distributed system hardware architectures, 
referred to as conformance types, which will be considered. Conformance type 0 
(kernel system) and conformance type 1 (uniprocessor system) essentially have no 
distribution, but are included for completeness. 

Table I Conformance Types 

Conformance 
Type 

Description 

0 Kernel system 

1 Uniprocessor system 

2 Multiprocessor system connected by a memory bus 
(A) or backplane (B) with global memory 

3 Multiple computers connected by a backplane bus 
or a single segment LAN with no global memory or 
store-and-forward 

4 Loosely coupled systems such as multi-segment 
bridged LANs to full WANs with store-and-forward 

2.2 A Taxonomy of DoD System Architectures 

There are basically three ways in which multiple processors are distributed. 
The first model considers placing multiple processors on the same memory bus or 
backplane with access to global memory and will be referred to hereinafter as 
multiprocessor systems (conformance type 2). A memory bus is a low protocol 
media that allows multiple devices to access a common address space. In 
contrast, a backplane is a high protocol bus that also allows multiple devices to 
access a common address space. The backplane protocol allows more 
sophisticated ways for devices to communicate and interact with each other. 

The second model is somewhat similar to the multiprocessor system model 
with one major difference, connection is provided via the more sophisticated 
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backplane or single segment local area network (LAN) and there is an absence of 
global memory (conformance type 3). This system architecture will be referred to 
hereinafter as the moderately coupled distributed system. 

The third model considers placing multiple processors or groups of 
multiple processors on a common network with store-and-forward and will be 
referred to hereinafter as a loosely coupled system (conformance type 4). 

2.2.1 Multiprocessor Systems 

In a multiprocessor system it is possible for the processors to share the 
same set of system resources such as memory, network interfaces, peripherals, 
etc., over a common memory bus or backplane. It is feasible for a global clock to 
be shared by all processors. Negligible execution overhead is exhibited when the 
clock resides on the same backplane as the processors. Having a global clock 
allows for a more consistent global state throughout the multiprocessor system. It 
is possible for the hardware to provide interprocessor interrupt generating 
facilities which may be used to synchronize and signal concurrent actions. It is 
also a trivial matter to communicate data by sharing globally addressable memory 
located on the same memory bus or backplane for a set of homogeneous 
processors [CH089]. The architecture for a simple multiprocessor system with 
global memory is depicted in Figure 1. 

Where the processors are heterogeneous (i.e., unlike in instruction set 
architecture and basic data type representations), the possibility could arise where 
analogous data are represented differently at the machine level. This would make 
the sharing of data a non-trivial concern. It is also possible for each of the 
processors to have access to its own private memory or to share memory with a 
subset of all processors connected to a common backplane. This complex 
multiprocessor architecture is depicted in Figure 2. 

2.2.1.1 Futurebus + 

The Navy's Next Generation Computer Resources Program (NGCR) has 
assembled a backplane working group with the task of developing a set of 
requirements for a backplane to be used on all future mission-critical computers. 
The resulting standard is known as Futurebus+, which is a revised and extended 
version of the original IEEE 896.1-1987 Futurebus standard [BOR90]. It is the 
intent of the NGCR to help make the Futurebus + standard become a major 
commercial success. Should this happen, the effect would be the reduction in the 
amount of funding the government would need to expend on research and 
development of system backplanes. 

Futurebus + is a specification for a scalable architecture. Scalable pertains 
to the width of the data path, which for Futurebus + may be 32, 64, 128, or 256 
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Figure 1        Simple Multiprocessor Systems (Conformance Type 2A) 

bits wide. The scalability allows this bus, as the name would suggest, to address 
future performance requirements in Navy systems. It has been determined that 
the protocol throughput of this bus in the 32-bit mode in 1990 would be 100 
Mbytes/second as opposed to the 256-bit mode in 1995, which would peak at 3.2 
GBytes/second [BOR90]. 

Futurebus+ provides functionality that's not unlike a LAN. The 
functionality can be described in layers much like the OSI model. The layers of 
Futurebus+ are shown in Figure 3. A particular implementation of the layers of 
Futurebus+ is known as a "profile." The Navy plans on specifying a set of profiles 
to meet its requirements. At this point in time, four profiles have been identified, 
but only two have been defined. Profile A specifies a 64-bit data-bus width with a 
default width of 32-bits. Profile B specifies a 128-bit data-bus width with default 
widths of 64-bits and 32-bits. Profile C will specify the cable interconnection for 
communications between systems. Profile D will specify the Futurebus+ for 
personal computer applications. Presently, profile C and D have not been 
defined. The fact that the Navy has identified standard profiles does not prevent 
industry from developing proprietary profiles to meet their own requirements 
[AND90]. Draft 4.0 of the physical layer and profile specifications (P896.2) has 
been released. Draft 8.2 of the logical layer and profile specifications (P896.1R) 
has been released for the required 6-month review. Specifications for connector 
requirements (P1101.2), BTL interface circuits electrical characteristics (P1194.1), 
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Figure 2        Complex Multiprocessor System with Local Memory (Conformance 
Type 2B) 

and the VME-to-Futurebus+ bridge (P1014.1) have been released in draft form 
to date. 

The Navy, under the NGCR program, has awarded three contracts to 
develop prototype versions of the Futurebus+ backplane supporting the following 
six processors: 

1. MilVAX 
2. MIPSR3000 
3. Intel 80486 
4. Motorola 68030 
5. AMD 29000 
6. Intel 88000. 

Each of the three contractors has the job of building a single prototype backplane 
to support two of the above processors, with a commonly addressable memory 
board, a 1553 serial interface board, a naval tactical data system (NTDS) fast 
interface board, a survivable, adaptable, fiber-optic embedded network 
(SAFENET) I interface board, and a SAFENETII interface board. It can be 
determined that the Navy plans on supporting heterogeneous processors on a 
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Figure 3        Futurebus+ Versus OSI Layers [AND90] 

common backplane with multiple backplanes being connected through a 
SAFENET network. 

2.2.1.2 Scalable Coherent Interface 

The scalable coherent interface (SCI) is presently being established as a 
standard defined by IEEE P1596 [ALN90] [GUS90]. It defines an interface 
standard for very high performance multiprocessors. Like Futurebus + , SCI 
supports a cache-coherent-memory model. SCI is scalable to systems with up to 
64K nodes and will supply a peak bandwidth per node of 1 gigabyte/second. 

2.2.2 Moderately Coupled Multiprocessor Systems 

With the advent of backplanes such as Futurebus+ and SCI which support 
complex protocols when compared to simple protocol memory buses, a new class 
of systems can be considered. In this class, multiple processors are connected to 
the same backplane without the availability of global memory. The processors do, 
however, have access to local memory or locally shared memory.  Other resources 
such as storage device controllers, input/output devices, and network interface 
devices can, however, be globally shared on the backplane. This architecture is 
depicted in Figure 4 and is referred to as a moderately coupled system. Since the 
backplanes support a complex protocol like those supported on LAN's the system 
can be viewed as a single segment LAN where each node depicts a processor, 
storage device controller, input/output device, network interface device, etc. 
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Figure 4        Moderately Coupled Multicomputer System (Conformance Type 3) 

2.2.3 Loosely Coupled Systems 

In the loosely coupled system model, processors do not share a common 
LAN or backplane. The common network becomes the only mechanism to share 
data and control. It is possible to view the network as comprised of multiple 
physical media connecting a number of nodes. Each node can be comprised of a 
multiprocessor system or a moderately coupled system. This architecture is 
depicted in Figure 5. Hereafter, when a loosely coupled system is referred to in 
this report, it denotes a system with communication between a processor on one 
node and a processor on another node through a network involving store-and- 
forward packet delivery mechanisms. Multisegment LANs, bridges, and routers 
are a few examples that fall into this category. Communications in loosely 
coupled systems suffer much greater delays (because of the store-and-forward 
nature) than the moderate delays of a single (moderately coupled) LAN or the 
minimal delays of a tightly coupled multiprocessor. 

2.2.3.1 Network Standards and Protocols 

Many different standard network protocols exist that provide a wide range 
of functions necessary to synchronize actions and communicate data. The DoD 
has mandated the transmission control protocol/internet protocol (TCP/IP) 
network protocol as the de jure standard for their networking needs [STA88]. 
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Figure 5        Loosely Coupled System (Conformance Type 4) 

Some network standards were developed by a particular company and for the 
most part remain proprietary, such as DECnet [STE88], but may become de facto 
standards within organizations. The future protocol plans of the DoD are to 
adopt the International Standards Organization (ISO) Open Systems 
Interconnection (OSI) reference model. From the outset, the OSI model was 
designed to become a standard [STA871] [TAN88]. 

The key advantages of standards are [STA872]: 

They assure that there will be a large market for a particular piece 
of equipment or software. 
They allow products from multiple vendors to communicate, giving 
the purchaser more flexibility in equipment or software selection 
and use. 

The tendency to freeze technology is the principal disadvantage of standards. 
Much effort has gone into developing these standards to provide a mechanism 
that will communicate between systems. Thus, the standards are worthy of further 
study in the following sections. The OSI reference model is described first 
followed by TCP/IP, DECnet, and SAFENET. The latter three are characterized 
in relation to the OSI model. 
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2.2.3.1.1 OSI Reference Model 

The development of a standard by ISO from initial proposal to final 
publication involves a seven-step process. This process has built-in delays which 
allows ample time for review and comment of the proposed standard by a wide 
audience. This helps to insure that the resulting standard meets the main goal of 
the ISO, that it will be acceptable to as many countries as possible. The seven 
steps are briefly described below [STA871]. 

1. A new work item is assigned to the appropriate technical committee 
(TC), and within that TC, to the appropriate working group (WG). 
The WG prepares the technical specifications for the proposed 
standard and publishes these as a draft proposal (DP). This DP is 
circulated among interested members for balloting and technical 
comment. At least 3 months is allowed, and there may be 
iterations. When there is substantial support, the DP is sent to the 
administrative arm of ISO, known as the central secretariat. 

2. The DP is registered at the central secretariat within 2 months of 
final approval by the TC. 

3. The central secretariat edits the document to ensure conformity with 
ISO practices; no technical changes are made. The edited 
document is then issued as a draft international standard (DIS). 

4. The DIS is circulated for a 6-month balloting period. For approval, 
the DIS must receive a majority approval by the TC members and 
75 percent approval of all voting members. Revisions may occur to 
resolve any negative vote. If more than two negative votes remain, 
it is unlikely that the DIS will be published as an international 
standard (IS). 

5. The approved DIS and revision are returned within 3 months to the 
central secretariat for submission to the ISO council, which acts as 
the board of directors of ISO. 

6. The DIS is accepted by the council as an IS. 
7. The IS is published by ISO. 

The open systems interconnection reference model was one such standard 
developed by the ISO. The OSI model defines seven layers [STA871] [TAN88], 
which are depicted in Figure 6. 

The physical layer is concerned with the physical (electrical, optical, etc.) 
transmission of raw bits over a communication channel. 

The data link layer is concerned with making the physical layer appear free 
of transmission errors to the network layer. The key function of this layer is to 
provide the mechanism by which frames are transmitted from source to 
destination. This layer is composed of two sublayers in the case of a LAN. The 
medium access control (MAC) sublayer defines the lower part of this layer and is 
concerned with determining who gets access to a communications channel when 
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7 APPLICATION APPLICATION / ADA TASK 
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Figure 6        Open Systems Interconnection Reference Model 

there is competition for it [TAN88]. The logical link control sublayer defines the 
upper part of this layer and is concerned with providing a uniform interface to the 
network layer regardless of the MAC protocol used. 

The network layer is concerned with controlling the operation of subnets. 
The routing of packets from source to destination, congestion, and flow control 
are the key issues addressed in this layer. 

The transport layer is concerned with reliable end-to-end transport of 
messages. The key issues addressed in this layer are the disassembling of 
messages into packets to send to the network layer. This layer also assures that 
packets arrive at the destination and are reassembled in the correct order to form 
the original message. 

The session layer is concerned with activity management between peer 
entities. The key issues addressed in this layer are the use of the connection 
established between the peer entities such as, token management and 
synchronization. 

The presentation layer is concerned with making the underlying differences 
in data representation appear invisible to the layer above. The key issues 
addressed in this layer involve insulating the application from the different ways a 
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system may represent data such as strings, integers, floating point numbers, and so 
on. 

The application layer is concerned with high level functions commonly used 
when communicating between nodes on the network such as electronic mail, 
virtual terminal, file transfer, and the rest of the application universe. 

2.2.3.1.2 TCP/IP 

The DoD was faced with the necessity of providing communication 
between an ever growing population of heterogeneous systems. The DOD 
determined the need to fulfill the two following requirements [STA88]. 

End systems must share a common set of communication protocols 
so they can interoperate. 
The suite of protocols used for this purpose must support an 
internetworking capability in a mixed-network environment. 

In response to this need and through the evolution of ARPANET, the Defense 
Communications Agency (DCA) issued the set of military standard protocols 
listed in Table II. The ARPANET was the creation of ARPA (now DARPA), the 
(Defense) Advanced Research Projects Agency of the U.S. Department of 
Defense. 

Table II DoD Military Standard Protocols [STA88] 

Number Tide Description 

MIL-STD-1777      Internet Protocol (IP) 

MIL-STD-1778 

MIL-STD-1780 

MIL-STD-1781 

MIL-STD-1782 

Transmission Control 
Protocol (TCP) 

File Transport Protocol (FTP) 

Simple Mail Transfer Protocol 
(SMTP) 

TELNET Protocol 

A connectionless service for end 
systems to communicate across one or 
more networks. Does not assume the 
networks to be reliable. 

A reliable end-to-end data transfer 
service. Equivalent to the ISO Class 4 
transport protocol. 

A simple application for transfer of 
ASCII, EBCDIC, and binary files. 

A simple electronic mail facility. 

A simple scroll-mode terminal 
capability 

11 



By mandating the use of a standard set of protocols, the DoD was able to 
prevent smaller organizational units within from adopting varying and potentially 
non-compatible existing protocols. The layers are not unlike the layers of the ISO 
model. 

The physical layer provides the physical media by which raw data are 
exchanged between hosts. 

The IMP-IMP layer provides the protocol that is used to transfer packets 
from one information message processor (IMP) to another. 

The source to destination IMP layer provides the mechanism that verifies 
correct reception of packets at the destination IMP. 

The host-to-host layer provides the mechanism by which data are 
transferred reliably and in the same order as it was sent from one host to another. 

The telnet, smtp, ftp layer provides protocols for virtual terminal, simple 
mail transfer, and file transfer. 

Finally, the process layer provides the protocols necessary to support a 
variety of applications. 

A comparison of the DoD networking layers and the ISO layers can be 
seen in Figure 7. Even though this protocol was mandated by DoD, many 
companies in private industry have adopted the protocol to solve the same 
problems identified by DoD. It is also becoming more commonplace for 
computer vendors to produce heterogeneous lines of computer systems such as 
Digital Equipment Corporation's (DEC) VAX systems and their newer DEC 
systems. The former is based on the VAX architecture and the latter is based on 
the MIPS R3000 RISC architecture. 

2.2.3.1.3 DECnet 

DECnet, a product of Digital Equipment Corporation, employs the Digital 
Network Architecture (DNA) model. Phase V of the DNA model is an 
evolutionary step from the previous version of the DNA model known as Phase 
IV. The Phase V model integrates the OSI model with the Phase IV model. The 
lower four layers (i.e., the physical, data link, network, and transport layers) are, 
for the most part, identical to the OSI model in terms of functionality. Two 
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Figure 7        A Comparison of the OSI and DOD Communications Architecture 

different protocol stacks reside above the transport layer in the DNA model as 
shown in Figure 8. 

The DNA physical layer has always been based on available standards that 
include EIA RS-232-D, which includes the corresponding ISO standards and the 
International Telegraph and Telephone Consultative Committee (CCITT) 
recommendations, and the Ethernet standards as reflected in IEEE 802.3 and ISO 
8802-3. 

The DNA data link layer uses the high-level data link control (HDLC) 
protocol. This protocol is described by ISO 4335 and ISO 7809. In the case of 
local area networks, the logical link control protocol of IEEE 802.2 and ISO 
8802-2 are employed. 

The DNA network layer uses ISO 8473 for data transfer. This protocol is 
the ISO protocol for providing the connectionless-mode network service (CLNS). 
ISO 9542 is used to facilitate the exchange of routing information between end 
systems and routers. This protocol is the ISO end system to intermediate system 
(ES/IS) routing protocol. ISO 8208, X.25 packet layer protocol, and the mapping 
defined in ISO 8878 are used to provide the connection-mode network service 
(CONS). ISO 8348 addendum 2 defines the addresses used by the DNA network 
layer. 
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The DNA transport layer employs ISO 8073, which includes Class 4 of the 
ISO transport protocol. Classes 0 and 2 are provided for use over the CONS. 
ISO 8072 provides the ISO transport service to a DNA application. 

The DNA session control layer provides the logical links or connections 
used by the application. This protocol is proprietary and is used to provide 
upward compatibility to applications being migrated from DECnet Phase IV to 
DECnet Phase V. All Phase IV DNA applications will continue to run on Phase 
V without modification. 

The DNA application layer supports a number of application protocols. 
The data access protocol (DAP) is provided for accessing and transferring files in 
a heterogeneous DECnet network. The network virtual terminal (NVT) service is 
provided to offer standard terminal services and device independence. The 
Mail-11 protocol is used to provide personal electronic mail capability. A rich set 
of applications protocols is provided for communicating with systems that conform 
to IBM's systems network architecture (SNA). VMS services for MS-DOS is a 
VAX-based remote file server that gives applications running under Microsoft's 
MS-DOS operating system access to files on a DEC computer system. The 
Digital time service defines an architecture for providing and maintaining correct 
time in a distributed system. VAX notes computer conferencing allows users of a 
DNA network to participate in round-table discussions. VAX system performance 
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monitor (VAX SPMtm) allows a member of a VAXClustertm to communicate with 
all other members of the cluster. VAX VTXtm is an application that provides a 
computer-based electronic retrieval system, which uses a hierarchical arrangement 
of information and is video terminal based. VAX distributed queuing service 
(DQS) allows users to queue print jobs on remote systems connected on the same 
DNA network. The remote system manager (RSM) is used to aid in the 
management of distributed DEC VMS and ULTRIX systems. 

The DNA OSI session layer is not yet specified. When they are specified 
by the OSI, it is anticipated that the standard will be implemented in an update to 
DECnet Phase V. 

The DNA OSI presentation layer is not yet specified. When they are 
specified by the OSI, it is anticipated that the standard will be implemented in an 
update to DECnet Phase V. 

The DNA OSI application layer contains many application service elements 
(ASE) for which many are currently under development. The association control 
service element (ACSE) is used to establish associations between applications to 
be used for the purposes of exchanging information. File transfer, access, and 
management (FTAM) services define services that facilitate file transfer, read, 
write, modify, creation, deletion, and attribute modification over the network. 
Virtual terminal (VT) services are similar to the facilities provided by the 
previously described DNA NVT service. 

2.2.3.1.4  SAFENET 

The process of developing standards to meet a wide variety of user needs is 
a very laborious and time-consuming task. The Navy has determined that the 
development of the ISO OSI reference model is taking too much time. 
Therefore, the Navy has decided to adopt standards based on the OSI model 
called SAFENET I and SAFENET II. The SAFENET (survivable adaptable fiber 
optic embedded network) standards have been developed by committee with 
industry and Navy participation. This group is known as the SAFENET working 
group. SAFENET is a set of standards (a subset of the OSI standard) including 
additional implementation agreements required to ensure interoperability 
[GRE89]. SAFENET I is to be specified in MIL Handbook MCCR 0034 (draft) 
and was delivered to its sponsor, SPAWAR 324, in January 1990. SAFENET II is 
to be specified in MIL Handbook MCCR 0035 (draft) and was delivered to the 
same sponsor in January 1991. 

The seven layers of the ISO model can be related to the SAFENET layers. 
The ISO layers are specified at too high a level to allow a complete 
implementation at this point in time. The DNA model could not specify the 
session and the presentation layers for this reason. The SAFENET layers, 
however, are specified in sufficient detail to allow full implementation at this 
time. Figure 9 depicts the protocol profile for SAFENET I [SAF901] and 
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Figure 10 depicts the protocol profile for SAFENET II [SAF902]. The mapping 
between the seven layers of the ISO model and the corresponding SAFENET 
layers can be seen in Figure 11. 
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igure 9        SAFENET I Protocol Profile [SAF901] 

SAFENET specifies three protocol suites, the ISO suite, the lightweight 
suite, and the combined suite. The ISO suite is used to maximize interoperability 
when dealing with heterogenous systems on the same network. It also provides a 
rich set of application layer services. In real-time embedded systems, however, 
this extra functionality usually indicates high and unwanted overhead. Therefore, 
SAFENET also provides a lightweight protocol suite to remove the unwanted 
overhead, yet includes enough services to provide the necessary functionality to 
build distributed systems with minimal communication latency. The combined 
suite incorporates both the ISO suite and the lightweight suite to provide all 
capabilities in one suite. 
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The application process portion of Figure 11 refers to the Navy's 
commitment to ensure support of applications written in Ada. This does not 
preclude applications written in other languages, only that the use of Ada is a firm 
requirement of DoD and must be addressed. This is not a formal layer of the 
SAFENET definition. It is shown here to clarify the Navy's view of Ada on 
distributed systems. 

The operating system portion of Figure 11 refers to a current effort being 
pursued by a subcommittee of the NGCR program. The definition of this layer is 
crucial in that it is here where design decisions concerning the distribution 
methodology of Ada is implemented. This is not a formal layer of the SAFENET 
specification. It is an approach which some segments of the Navy are considering 
for implementing Ada on loosely coupled systems. 

The SAFENET ISO protocol suite user services encompass the ISO 
application, presentation, and most of the session layers. The protocol is based on 
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Figure 11      ISO Model to SAFENET Protocol Suite Mapping 

the manufacturing automation protocol (MAP), version 3.0. MAP defines many 
of the upper layer OSI services that are not yet fully defined. In general, MAP 
3.0 defines protocols for association establishment, data transfer, file handling, 
and directory services. MAP 3.0 definitions include the following: 

FTAM, the services used for file handling 
directory services 
ACSE, the services used for association establishment 
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presentation layer protocol 
session layer protocol 
Private communications application interface specification 
Application interface support functions 
Connection management interface specification 
FTAM application interface specification 

The lightweight application interface requirements are briefly, if not inadequately, 
described in [SAF901] and [SAF902] section 6.2. 

The SAFENET ISO protocol suite transfer services encompass the 
remainder of the ISO session, the transport, network, and part of the data link 
layers. The connection-oriented transport protocol is based on ISO 8073, 
transport protocol class 4 (TP4). The SAFENET lightweight protocol suite 
transfer services is implemented in accordance with the express transfer protocol 
.(XTP) definition [XTP90]. The ISO connectionless (CL) transport protocol is 
implemented in accordance with ISO 8602. The CL transport protocol is 
applicable to single segment LANs only. Multicast transfer has not been defined 
to date but is a requirement by the SAFENET user interface. The ISO 
connectionless-mode network protocol is implemented in accordance with ISO 
8473. Network layer address formats are implemented in accordance with 
addendum 2 of ISO 8348. ISO end system/intermediate system (ES/IS) intra- 
domain routing protocol is used. The IEEE logical link control (LLC) protocol is 
employed in accordance with IEEE 802.2. The sub-network access protocol 
(SNAP) is employed in accordance with IEEE 802.1 A 

The SAFENET local area network services encompass the remainder of the 
ISO data link, and the physical layers. These services differ for SAFENET I and 
SAFENET II. The token-ring medium access control (MAC) protocol specified 
by IEEE 802.5 with options (addendum C) plus ring hop is used for SAFENET I. 
The fiber distributed data interface (FDDI) MAC protocol specified by ISO 9314- 
2 is used for SAFENET II. 

2.3 Distributed System Software Requirements 

Services are required to enable software to utilize the full processing 
potential of distributed systems. The service requirements of a system are 
dependent on the architecture of the distributed system. The distributed system 
hardware architecture conformance types were depicted in Table I. 

Specific service primitives are not necessarily appropriate over all 
architecture conformance types. By way of illustration, consider the two following 
general classes of service: 

1. Synchronization 
2. Message transfer. 
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For synchronization, the semaphore, monitor, Ada rendezvous, and activity 
management services are considered. For message transfer, read/write primitives, 
datagrams, acknowledged datagrams, reliable messages, and broadcast datagrams 
are considered. Table III characterizes the appropriateness of these various 
services with respect to system architecture. 

Table III       Distributed Software Service Requirements 

Conformance Type 

0 1 2 3 4 

Synchronization: 

Semaphore X X X 

Monitor X X X X 

Rendezvous X X 

Activity X X 

Message Transfer: 

Read/Write X X X 

Datagram X X 

Acknowledged Datagram X* 

Reliable Message X 

Broadcast X* 

* Well suited for this mechanism 

It can be seen by analyzing Table m that some services are inappropriate 
for some architectures. Of particular interest is the Ada rendezvous which is 
appropriate for uniprocessor and multiprocessor systems with shared memory. 
Conformance level 3 very effectively supports acknowledged datagrams and 
broadcast. When dealing with systems that involve store-and-forward message 
transfer such as multi-segmented LANs or WANs (wide area networks), other 
mechanisms not directly supported by Ada runtimes are more appropriate, such as 
unacknowledged datagrams and reliable messages (virtual circuits). Another 
mechanism that is very useful and often required in some distributed systems is 
the broadcast datagram. This concept is not directly supported by Ada or most 
WAN protocols. 
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3 TYPES OF DISTRIBUTED SYSTEMS WITH ADA 

In light of the discussions in section 2 covering the architectures of 
distributed systems, this section will discuss the similarities, variations, and 
characteristics of distributed systems with Ada from the perspective of software. 

3.1 Distributed Ada System Models 

There are basically two ways in which an Ada program is distributed across 
a number of processors [RAB90]. The first way is to conceptually place a single 
Ada application across the entire suite of processors. In this model, the unit of 
separation may be the Ada task, package, subprogram, or any unit depending on 
the desired distribution complexity. The Ada programming language reference 
manual, ANSI/MIL-STD-1815A states in a note that "parallel tasks ... may be 
implemented on multicomputers, multiprocessors, or with interleaved execution on 
a single physical processor." [LRM83, p. 9-1]. The unit of parallel execution may 
be a task, but is in fact, arbitrary and unique to each implementation of Ada. 
The high-level constructs offered in the Ada language must be partitioned onto 
physical processors either through automatic selection or selection by the systems 
programmer. This step can be performed independently of normal software 
development, thus allowing the language to be fully utilized in its support for good 
software engineering practices. Conceptually, the main program unit serves as the 
root task in the tree of tasks that may compose the context of the distributed 
application. The details of the mechanisms used for task synchronization and data 
communication are integral parts of the Ada runtime kernel and are invisible to 
the applications programmer. 

The second model used to distribute Ada programs is to place one or more 
Ada programs on each processor. An external mechanism is employed to provide 
program synchronization and data communication. The Ada runtime generally 
does not support any of the communication mechanisms directly. Mechanisms are 
provided externally to the language through packages and subprograms. The job 
of providing interprogram communication of data and synchronization is the 
responsibility of the system designer. The mechanisms used for program 
synchronization and data communication are not integral parts of the Ada 
runtime and are not invisible to the applications programmer. 

3.1.1 Ada on Multiprocessor Systems 

Multiprocessor systems have been described as providing a number of 
processors attached to a common backplane or memory bus. It is usually the case 
where all of the processors are alike (homogeneous), that is, identical in 
architecture and instruction set. Global memory can be attached to the common 
backplane and accessed by all of the processors. It is possible for all of the 
processors to share data by placing the data in a mutually agreed upon address in 
global memory. This type of system lends itself well to incorporating the 
techniques described in the first model of distributed Ada programs [CH089] 
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[LIN89] [ELL89] [BAM88] [VAN89] [BAK86]. With minimal changes required to 
be made to the Ada runtime, which normally executes parallel tasks in interleaved 
fashion on a single processor, the runtime can now support execution of tasks 
across the entire set of processors. The following system features are required to 
minimize, if not eliminate, compiler modifications and minimize runtime 
modifications [LIN89]: 

Any data shared by tasks running on separate processors 
must be placed in globally accessible memory. 
Transparent memory bus arbitration is also required to avoid 
modifying the Ada compiler. 
An atomic test-and-set instruction, or equivalent, to be used 
for mutual exclusion. 
A mechanism to allow processors to interrupt each other. 
This requirement is used to implement cross processor 
rendezvous. 

• "      A mechanism to identify and distinguish between processors. 
This requirement is used to organize data structures specific 
to a particular processor. 
A set of timers that all processors can read and set. This 
requirement simplifies the implementation of the delay 
statement and package CALENDAR. 

The above requirements are essential to implement the Texas Instruments 
Multiple Processor Ada Runtime (TI MPAR) system. 

Selecting the processor on which to execute a task may be determined at 
program bind time [JHA89] or automatically and dynamically [LIN89] by the 
kernel of the Ada runtime. The latter has the advantage of possibly incorporating 
a dynamic load-balancing algorithm to insure peak execution performance 
regardless of changing execution conditions. 

In the case of the Navy's Futurebus+ heterogeneous multiple processor 
configurations, a number of complications are introduced. The processors are not 
alike, therefore, it is more difficult to develop an Ada compiler and supporting 
runtimes across the entire suite of processors. In fact, there are a limited number 
of compiler vendors that produce a single compiler, which targets a number of 
different processors. In those cases where a single compiler does target a number 
of different processors, the runtimes for each targeted processor are unique and 
do not incorporate the necessary mechanisms to interoperate, such as support for 
heterogeneous cross processor rendezvous. 

The problem of data representation at the machine level complicates 
matters. One cannot simply share global data in commonly addressable memory 
without consideration of the cooperating target processors. Byte ordering between 
processors may differ. For instance, the VAX is a little endian processor 
[TAN88] and the other five processors being prototyped by the Navy are 
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configured as big endian. If the intent is to have data shared in commonly 
addressable memory, the data producing processor, or the data consuming 
processor, or both would have the responsibility of converting the data. 
Mechanisms such as the Sun external data representation (XDR), the ISO model's 
abstract syntax notation 1 (ASN.l) [TAN88], or a unique conversion process, 
could be used to convert the data from one processor's representation to the 
other processor's representation, or to a mutually agreed upon neutral 
representation. This would require shadowing the global data with an analogous 
data structure in the agreed upon representation, thus, multiplying the memory 
requirement for sharing data by the number of processors requiring different 
representations. To make all of these presentation issues invisible to the 
applications programmer would require extensive modifications to the Ada 
runtime. Along with the invisibility would come questions from the systems 
designer of what effect the associated overhead would have on performance. 

When building a large embedded distributed system, the system designer 
does not want to consume time developing or modifying the Ada compiler or 
runtime. It is the desire of the system designer to implement the application 
without distractions [VAN89]. It has been suggested that a multiprocessing 
support kernel can be built external to the Ada runtime. This would provide a 
timely solution that is more economical, and thus feasible as a short-term 
alternative. 

3.1.2 Ada on Moderately Coupled Systems 

Moderately coupled systems do not have shared memory. This makes it 
more restrictive in the use of Ada tasking in that a programming discipline must 
be enacted to disallow the use of data objects shared by tasks that may run on 
separate processors. Enforcement of such a programming system would, in effect, 
allow a subset of Ada to exist. This would be an undesirable effect and invalidate 
the Ada compiler being used. Mechanisms could be employed to share data and 
synchronize actions through communications protocols over the backplane or 
single segment LAN. These mechanisms are similar to those that would be 
necessary to implement on a loosely coupled system and will be discussed in more 
detail in the section 3.1.3. 

An Ada runtime was modified for the Hypercube (homogeneous 
moderately coupled) system [CLA89]. All communication between tasks was 
accomplished via a message-based approach utilizing the system's existing store- 
and-forward communication facilities. The allowed units of distribution were 
library packages and library subprograms. Tasks declared within a library package 
were also allowed to be distributed. Nested tasks are restricted to execute on the 
same processor as the parent task. It was determined that the limitations on the 
allowable distributable units greatly effects the requirements (overhead) of the 
Ada runtime system (i.e., less restrictions implies greater runtime overhead). 
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3.1.3 Ada on Loosely Coupled Systems 

Loosely coupled systems have been described as containing many 
processors that do not share global memory nor a single interconnect medium 
(i.e., a common backplane bus or single segment LAN). Moreover, they employ 
store-and-forward with the attendant delays. The mechanism employed to share 
data and to synchronize actions is implemented through communications 
protocols. 

The Navy's NGCR effort has clearly identified SAFENETI and 
SAFENET II as the networking standard to be used in future systems. 
SAFENET is applicable to all shipboard, aircraft, and landbased interconnection 
problems, with either OSI standard compatibility or real-time data transfer 
requirements [SAF901] [SAF902]. 

For most Navy applications, the communication protocols are implemented 
on multiple LANs. It is increasingly becoming the case where the processing units 
connected to the same LAN are not alike. Commonly addressable memory is not 
available to the cooperating processors. This type system does not lend itself well 
to incorporating the techniques described in the first model of distributed Ada 
programs. 

Some additional general considerations for Ada compiler and runtime 
modifications to support this first model of a monolithic Ada program across 
heterogeneous processors are summarized in Table IV. An Ada development 
system would need to be evolved to support program development that targets all 
heterogeneous processors of interest. There are two basic approaches that can be 
taken to accomplish this. In the first approach, a single Ada compiler can be 
developed to support multiple back-ends and runtime systems that target each 
processor. In the second approach, separate existing Ada compilers, that are 
hosted on different processors and separately target all processors of interest, 
could be modified to support a single program library that all compilers store 
information and object code in. Tools would have to be developed that can 
extract the appropriate object modules from the program library to link and 
download executable modules to all targeted processors. The program library 
would have to support uniform analogous data types across all processors to 
overcome the compiler differences, some of which are summarized later in 
Table V of section 4.1.4. Code would have to be generated to convert data, 
where necessary, that are communicated across processor bounds in support of 
remote object references, remote subprogram calls, and remote entry calls. 

Runtime environments targeted for each processor would have to be 
developed/modified to support the level of desired distribution. Restrictions on 
the level of distribution would have a large effect on the resulting runtime 
overhead (i.e., greater distribution flexibility would result in larger runtime 
overhead and size). Mechanisms within the runtime are required to support 
memory management, time management, tasks, and exceptions. Other 
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Table IV       Ada Runtime Modification Requirements 

Ada Development System An Ada compiler that targets multiple 
processors accompanied by tools for 
linking, downloading, executing, and 
debugging; 
or, 
Multiple Ada compilers that can share 
information through a common program 
library to support interface and type 
checking. 

Units of Distribution Restrictions must be determined on 
allowable Ada units of distribution. 

Memory Management A mechanism is required to support the 
•shared-memory model of Ada. 

Time Management A mechanism is required to support 
global time of day as well as delays. 

Task Communication A mechanism is required to support the 
communication of data between tasks 
running on distributed heterogeneous 
tasks. 

Task Activation and 
Termination 

A mechanism to support the activation 
and termination of distributed tasks. 

Task Scheduling A mechanism to support the scheduling 
of tasks. 

Exception Handling and 
Propagation 

A mechanism to support the handling 
and propagation of exceptions across 
processor bounds. 

Other Support for interrupts, I/O, predefined 
packages, generic units, and compiler 
attributes. 

mechanisms are needed to support processor interrupts, I/O, predefined packages, 
generic units, and compiler/processor independent/dependant attributes. 

It is not impossible, however, to implement the first model for 
homogeneous processors as suggested by Brennan [BRE89]. This model would 
leave the detail of distribution mostly invisible to the applications programmer. It 
may require extensive modifications, depending on the desired level of 
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distribution, to the Ada runtime to support a distributed network of homogeneous 
processors. To support a distributed network of heterogeneous processors would 
require an even greater effort determined by the number of unlike cooperating 
processors. The addition of presentation layer services to accommodate 
heterogeneous processors was briefly mentioned in Brennan's model and not 
included in his proposed communications kernel. One consideration would be to 
standardize the communications kernel such as that suggested by Brennan within 
the Ada runtime. This could make it possible for the products, in particular Ada 
runtimes, of many Ada vendors to interoperate. 

Clearly, a lot of effort would have to go into the design, development, or 
modification of the Ada compiler, program library, support tools, and runtime 
environment to overcome the requirements needed to support this model of 
distribution. 

The second model used to build distributed systems with Ada is much 
more practical when dealing with loosely coupled heterogeneous systems. The 
external mechanism used to provide the distributed functionality can simply be an 
Ada package. This package can be an interface to a standard network protocol 
[RAB89] [RAB90] [STE88] [STE89]. In this way, distributed architectures and 
systems of the past can be migrated into Ada with minimal, if any, changes to the 
Ada runtime. Some of Ada's tight type checking is lost across heterogeneous 
processor (program) bounds, however. 

The following requirement is needed to ensure an interface that mates well 
with the semantics of Ada: 

The Ada runtime must be capable of suspending a task that 
is waiting for I/O, and must also be capable of resuming the 
task upon completion of the I/O if the task has the highest 
priority [RAB90]. The task is marked ready to run otherwise. 

Frequently, implementations of Ada do not provide a program asynchronous task 
synchronous (PATS) I/O capability. Because of this, when an I/O function is 
called, the entire Ada task tree is blocked. Clearly, this is an undesirable side 
effect and leads system designers and programmers to solutions which do not 
involve Ada tasks. What is needed is the capability for just the task to block that 
is calling a blocking network message passing primitive. The Ada runtime would 
then schedule other tasks to run while waiting for the I/O to complete. Upon 
completion of the message passing primitive, the calling task would be 
preemptively rescheduled to run if the currently running task is of lower priority. 
If the currently running task is of equal or higher priority, then the task would 
wait its turn to run (this is dependent on the scheduling algorithm employed). 
Higher levels of inter-processor communication such as remote procedure calls 
(RPC) can be built on top of this message passing mechanism. 
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VAX Ada provides a package called TASKINGSER VICES that provides 
a PATS implementation of most of the system services of VMS, that cause a VMS 
process to block. The underlying blocking VMS system service used for I/O is 
the QIOW (queue an I/O request and wait). Through the use of the Ada 
procedure TASKINGSERVICES.TASKQIOW, only the calling task blocks, not 
the entire VMS process. This technique was employed by the author in the 
implementation of an Ada interface to DECnet in the package DECnetIO 
[STE88] and led to desirable results. This technique was not employed, however, 
to an Ada interface to TCP/IP in the package TCP_IO [STE89] and led to the 
undesirable results described above. These problems were averted through an 
implementation modification to the package body of TCPJO for the purposes of 
this report (use of the procedure TASKING_SERVICES.TASK_QIOW was 
employed) to gain the desired PATS functionality. 

In light of this analysis, it is recommended that the most cost effective and 
timely solution to developing distributed heterogeneous systems in Ada, for the 
near future, would be to use single Ada programs that communicate with each 
other through a well-defined standard network interface in the form of an Ada 
package. Section 4 will illustrate this technique by describing two such packages 
implemented on heterogeneous systems. 
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4 PROGRAMMING TECHNIQUES 

Application programming techniques are not much of an issue when 
distributed execution is handled invisibly by the Ada runtime. An application 
programmer does not worry about distribution or specifies the distribution later, 
at system bind time. In the case where this is not so, all of the responsibility of 
distribution lies on the system designer and programmer. This section identifies 
techniques that aid the programmer in developing distributed Ada programs in a 
consistent fashion. 

4.1 A Network Interface 

This section will discuss two Ada interfaces to the TCP/IP network 
protocol. One interface was developed as part of the Advanced Combat System 
Interactive Design Laboratory (ACSIDL) which was developed at the Naval 
Underwater Systems Center (NUSC) in Newport, Rhode Island [STE89].   The 
second interface was developed for the purpose of illustrating the conclusions of 
this study. 

The need for the first interface to the TCP/IP network protocol stemmed 
from a requirement to develop a distributed simulation involving heterogeneous 
processors. The simulation was to be coded in VAX Ada on a VAX/VMS 
computer system. The VAX was chosen for its production quality Ada compiler 
and mature software development tools. The rational for this decision was to 
help reduce the risk of implementing a large piece of code in Ada by a team of 
designers and programmers new to the language. The display systems that were 
employed for the man-machine interface which were used to observe and 
manipulate the simulation where Silicon Graphics Iris Workstations. The Iris was 
chosen for its superior graphics handling capabilities. All systems involved were 
connected to a common Ethernet cable. Each system supported the TCP/IP 
network protocol. The TCP/IP network protocol was fortunately designed with 
heterogeneity in mind. 

The second interface was developed on a Sun workstation to illustrate the 
points and considerations being discussed in this report. An attempt was made to 
develop the interface on the Silicon Graphics Iris workstation, but this attempt 
was unsuccessful because of the immaturity of the MIPS Ada compiler. The 
MIPS Ada compiler used the Verdix Ada compiler front end, together with a 
MlPS-developed code generator, and Ada runtime. I decided to develop the 
interface on the Sun workstation as an alternative due to the similarities of the 
underlying data representations used on both the Sun and Iris workstations. The 
Verdix Ada compiler hosted on and targeted for the Sun workstation was used for 
the implementation of this network interface. The interface for the most part is 
identical in the functionality provided to that of the interface developed on the 
VAX. 
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The VAX and Sun systems have some fundamental differences in 
architecture that had to be contended with. The VAX is a little endian system, 
which implies that its bytes are numbered with byte 0 being the low-order 
rightmost byte, whereas the Sun is a big endian system, which implies that its 
bytes are numbered with byte 0 being the high-order leftmost byte [TAN88]. In 
addition, the VAX uses a proprietary F_FLOATING single-precision floating- 
point representation, whereas the Sun uses a standard IEEE single-precision 
floating-point representation. The low level representation of system time 
differed on both systems. However, both systems use ASCII character and string 
representation and the same bit representation for integers. 

The interface is implemented as an Ada package called TCP_IO on the 
VAX and TCPIO on the Sun. The set of primitives make up a subset of the 
primitives available in a full TCP/IP implementation. The primitives do, 
however, provide all of the functionality needed to perform reliable connection- 
oriented message transfers. 

4.1.1 TCP_IO Interface Primitives 

The following is a list of primitives contained in the VAX-based package 
TCP_IO. The list briefly describes the functionality of each primitive along with 
its Ada interface. The primitives represent a subset of all primitives available in 
most implementations of TCP/IP. Those that provide virtual circuit capabilities 
were implemented. 

Socket This procedure is used to create a socket that is an 
end point for communication. 

procedure SOCKET ( 
S       :   out integer; -- socket 
DOMAIN  : in integer; -- communications domain 
S TYPE  : in integer; -- communication semantics 
PROTOCOL : in integer); -- specifies a particular protocol 

Bind This procedure is called after a socket has been 
created. Bind assigns a port name or number to be 
used as a reference by other processes on the network. 

procedure BIND ( 
STATUS  :   out integer; -- return status 
S      : in    integer; -- socket 
NAME   : in    SOCKADDRS; -- name to assign to socket 
NAMELEN : in    integer); - - length of name 

Connect        This procedure called by a process to establish a 
connection to a remote process. The node name and 
the port name or number used in the BIND call by 
the remote process is used in this call. 
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procedure CONNECT ( 
STATUS  :   out integer; 
S      : in    integer; 
NAME   : in    SOCKADDRS; - 
NAMELEN : in    integer);  - 

- return status 
- socket 
- remote socket name 
- name length 

Listen This procedure determines the allowable backlog of 
incoming connection requests. 

procedure LISTEN ( 
STATUS 
S 
BACKLOG 

out integer; 
in integer; 
in    integer); - 

- return status 
- socket 
- max length of queue of pending 
- connections 

Netclose        This procedure is used to close a socket and end the 
communication session. 

procedure NETCLOSE ( 
S : in    integer); -- socket 

Netread This procedure is used to read messages from a socket 
that has been connected to another socket. 

procedure NETREAD ( 
CC    :   out integer; 
S     : in    integer; 
BUF   : in    SYSTEM.address; - 
NBYTES : in    integer); 

- return length 
- socket 
- buffer address 
- buffer length 

Netread_Buffered    This procedure is used to buffer successive 
NETREADs to result in a message of user-specified 
length. A producer process may send a message of 
greater length than is received by NETREAD. 
Therefore, multiple NETREADs must be performed 
by the consumer process. This procedure hides the 
details of this operation. 

procedure NETREAD_BUFFERED  ( 
CC 
S 
BUF 
NBYTES 

Netwrite 

out integer; 
in    integer; 
in    SYSTEM.address; - 
in    integer); 

- return length 
- socket 
- buffer address 
- buffer length 

This procedure sends a message on the specified 
socket. 
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procedure NETWRITE  ( 
CC 
S 
BUF 
NBYTES 

out integer; --  return length 
in integer; --   socket 
in SYSTEM.address; --  buffer address 
in integer); -- buffer length 

Rhost This procedure is used to look up an internet host by 
name and return a 32-bit internet address. 

procedure RHOST  ( 
IADDR  : out integer;   --  32-bit internet address 
ANAME   :   in out string);   -- host name 

TCP_Accept This procedure is used to accept inbound connection 
requests from a socket. It returns a new socket to be 
used in communicating to the requesting process. 

procedure TCP_ACCEPT ( 
NS 
S 
ADDR 
ADDRLEN 

out integer; -- new socket returned 
in    integer; -- socket 

out SOCKADDRS; -- address of the connecting entity 
out integer); -- length of address returned 

Put_Bin        Two overloaded procedures used to print the binary 
values of integers or 32-bit array types to the screen. 
These procedures are predominantly used for 
debugging. 

procedure PUT_BIN ( 
BUFFER : in    integer); 

procedure PUT_BIN ( 
BUFFER : in    SYSTEM.BIT_ARRAY_32); 

Htons This function converts the host byte ordering to 
network byte ordering for a two-byte word. 

function HTONS (BUFFER : in short_integer) 
return short_integer; 

Htonl This overloaded function converts the host byte 
ordering to network byte ordering for a four-byte long 
word. 

function HTONL (BUFFER : in integer) 
return integer; 

function HTONL (BUFFER : in SYSTEM.BIT_ARRAY_32) 
return SYSTEM.BIT ARRAY 32; 
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4.1.2 Package VAXIEEE 

The package VAX_IEEE was written to deal with the architectural and 
data representation differences between the VAX and Sun computer systems.   In 
a sense, this package can be viewed as providing the presentation layer services 
needed for this application. The design decision was made to perform all data 
representation conversions on the VAX. This was done to make all data 
representation issues completely invisible to the man-machine interface system 
designers and application programmers utilizing the Sun (and the Iris in the case 
of ACSIDL) system. All responsibility was assumed by the system designers and 
application programmers implementing the simulation that utilized the VAX 
system. 

The following is a list of primitives contained in package VAXIEEE. The 
list briefly describes the functionality of each primitive along with its Ada 
interface. 

Convert_IEEE Float_To_VAX_On_VAX This function converts the 
float bit representation of IEEE single-precision 
floating point numbers to the bit representation of 
VAX F_FLOATING single-precision floating point 
numbers. 

function CONVERT_IEEE_FLOAT_TO_VAX_ON_VAX ( 
BUFFER : in SYSTEM.BIT_ARRAY_32) 
return float; 

Convert_VAX Float To_IEEE_On_VAX This function converts the 
float bit representation of VAX F_FLOATING single- 
precision floating point numbers to the bit 
representation of IEEE single-precision floating point 
numbers. 

function CONVERT_VAX_FLOAT_TO_IEEE_ON_VAX ( 
BUFFER : in float) 
return SYSTEM.BIT_ARRAY_32; 

LIB_DAY      This procedure returns the number of days since the 
system zero date of 17 November 1858, or the number 
of days from system zero date to a user supplied date. 
This is a direct interface to the VAX/VMS operating 
system runtime library routine LIB$DAY. 

procedure LIB_DAY ( 
DAY_NUMBER 
USER_TIME 
DAY TIME 

out integer; 
in    CALENDAR.TIME; 

out integer); 
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Get_Integer_Time    This function converts a time value into an 
integer value, which represents the number of seconds 
from base time 1 January 1988. 

function GET_INTEGER_TIME ( 
TIME : in CALENDAR.TIME) 
return integer; 

4.1.3 TCPIO Interface Primitives 

The following is a list of primitives contained in the Sun based package 
TCPIO. The list briefly describes the functionality of each primitive along with its 
Ada interface. The primitives in this package are similar to the primitives in the 
VAX based package. The differences are due to the differing methods used to 
facilitate the pragma INTERFACE in both compilers. The Verdix compiler only 
allows parameters of mode "in". All parameters must be 32 bits in size. 

Socket This function is used to create a socket that is an end 
point for communication. 

function Socket  ( 
Domain  : in integer; - - communications domain 
S Type   : in integer; - - communication semantics 
Protocol : in integer) -- specifies a particular protocol 
return integer; - - socket 

Gethostbyname        This function is used to look up an Internet 
host by name and return information about the name 
including a 32-bit Internet address. 

function Gethostbyname ( 
Name : in    string) -- host name 
return H0STENT_PTR;   -- host name record including address 

Bind This function is called after a socket has been created. 
Bind assigns a port name or number to be used as a 
reference by other processes on the network. 

function Bind ( 
S :   in integer; --  socket 
Name :   in SOCKADDRS_PTR;   --  name  to assign to socket 
Namelen  :   in integer) --  length of name 
return integer; -- Status 

Listen This function determines the allowable backlog of 
incoming connection requests. 
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function Listen ( 
S      : in 
Backlog : in 
return integer; 

integer; - 
integer) - 

- socket 
- queue length 
- status 

Connect        This function called by a process to establish a 
connection to a remote process. The node name and 
the port name or number used in the BIND call by 
the remote process is used in this call. 

function Connect ( 
S      : in    integer; 
Name   : in    SOCKADDRS_PTR; 
Namelen : in    integer) 
return integer; 

- socket 
• - remote socket name 
■ - name length 
■- status 

TCP_Accept This function is used to accept inbound connection 
requests from a socket. It returns a new socket to be 
used in communicating to the requesting process. 

function TCP_Accept ( 
S      : in    integer; 
Addr   : in    S0CKADDRS_PTR; 
Addrlen : in    ADDRLEN_PTR) 
return integer; 

- socket 
•- remote address 
• - address.length 
■- status 

Recv This function is used to perform an unbuffered read of 
a message from a socket that has been connected to 
another. 

function Recv  ( 
S :   in 
Buf :   in 
Len :   in 
Flags       :   in 
return integer; 

integer; 
SYSTEM.address; 
integer; 
integer  :- 0) 

- socket 
■- buffer address 
- buffer length 
■ - flags 
■- return length or status 

Send This function is used to perform an unbuffered write 
of a message to a socket that has been connected to 
another. 

function Send ( 
S : in 
Msg : in 
Len : in 
Flags : in 
return integer; 

integer; 
SYSTEM.address; 
integer; 
integer :- 0) 

- socket 
- buffer address 
- buffer length 

■ - flags 
■- return length or status 

Close This procedure is used to close a socket and end the 
communication session. 
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procedure Close ( 
S      : in    integer); -- socket 

Netread This function is used to read messages from a socket 
that has been connected to another socket. 

function Netread  ( 
S               :   in integer;                  -- socket 
Buf           :   in SYSTEM.address;   -- buffer address 
Nbytes     :   in integer)                 -- buffer length 
return integer; -- return length or status 

Netwrite        This function sends a message on the specified socket. 

motion Netwrite ( 
S      : in integer; -- socket 
Buf    : in SYSTEM.address; -- buffer address 
Nbytes  : in integer) -- buffer length 
return integer; -- return length or status 

Netread_Buffered    This function is. used to buffer successive 
NETREADs to result in a message of user-specified 
length. A producer process may send a message of 
greater length than is received by NETREAD. 
Therefore, multiple NETREADs must be performed 
by the consumer process. This function hides the 
details of this operation. 

function Netread_Buffered ( 
S      : in    integer; -- socket 
Buf    : in    SYSTEM.address; -- buffer address 
Nbytes  : in    integer) -- buffer length 
return integer; -- return length or status 

Perror This procedure prints the actual error message to 
standard output. This procedure is usually called after 
a status of -1 is returned from other TCPIO primitives. 

procedure Perror  ( 
S :   in string);   --  error string 

4.1.4 Compiler Differences 

There are differences evident in the implementations of the network 
package interfaces described in the sections above. Part of this is because the 
TCP_IO interface developed for the VAX was completed before knowledge of the 
Sun Ada compiler existed. Pragma INTERFACE for the VAX Ada compiler can 
support all possible parameter passing mechanisms (value, reference, string 
descriptor) and modes (in, out, in out), whereas the Verdix Ada compiler on the 
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Sun and the MIPS Ada compiler on the Iris (an interface was attempted on this 
system without success because of compiler bugs) support only pass by value of 
mode IN and each parameter is limited to a 32-bit size. Had this been known 
from the beginning, some careful design of the network package interface on each 
system could have possibly resulted in an identical interface. 

Support for the built-in data types by Ada in package STANDARD on 
each system, also contained some fundamental differences. The preferred method 
used to deal with this problem is to define a portable derived type for all required 
types and refrain from using the predefined types. The following type declaration 
is an example of a portable derived type: 

type MY_FLOAT is new float; 
--or 
type MY_FLOAT is new short_float; 

This declaration would be the only change necessary to port the program from 
one system to the next. Table V illustrates some of these differences. 

Table V        Ada Compiler Type Differences 

Size 
(bits) 

VAX Ada Verdix Ada 
(SUN) 

MIPS Ada 
(IRIS) 

8 short_short_integer tiny_integer tiny integer 

16 short_integer short_integer short_integer 

32 integer integer integer 

32 float 
(FFLOATING) 

short float 
(IEEE) 

float 
(IEEE) 

64 long float 
(DFLOAITNG) 

float 
(IEEE) 

long float 
(IEEE) 

The declarations shown in Table V would aid in making the Ada source file 
portable, but would not help the situation where the distribution is provided in 
the runtime. If there is no global agreement between vendors of Ada runtimes on 
the textual representation of analogous data, it would be impossible to implement 
distributed capability in a heterogeneous environment. 
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4.1.5 Primitive Calling Sequence 

The following sections will describe how to use the previously specified 
network procedures by stating their required calling order by processes on both 
sides of a communications channel. The processes can be thought of as a client 
and a server. The client being the process requesting a communication 
connection to a server, and the server being the process accepting incoming 
communication connection requests from clients. For the purposes of this report, 
the process is an Ada task and will be referred to in the following sections as 
simply a task. 

4.1.5.1 Server Calling Sequence 

To establish a network connection between two tasks on the network, the 
task must first create a TCP socket using the procedure SOCKET. This socket 
can be thought of as one end of a communication channel, much like a telephone. 

To enable other tasks on the network to connect to this socket, a task must 
make its socket known to the network by use of the procedure BIND. This 
procedure basically associates the socket with a port on the node in which the 
task resides, much like publishing ones telephone number. This task will be 
referred to as the server. 

The server task must next specify the size of the incoming request queue 
before a connection request can be accepted. This is accomplished through use of 
the procedure LISTEN. This determines the number of pending incoming 
connection requests allowed on the socket. 

The server task must then call TCP_ACCEPT. This call will block the task 
until an incoming connection request is initiated by a client for this known TCP 
port. This is analogous to a person waiting for the telephone to ring. It is at this 
point that I would like to reemphasize the need for a PATS implementation of 
the blocking primitives such as TCP_ACCEPT. Without it, other Ada tasks 
within the program would be needlessly blocked, resulting in undesirable runtime 
effects. 

When a request from a client task is received, a new socket (NS) is 
automatically returned from TCP_ACCEPT. This is analogous to a person 
answering the telephone. Bidirectional communication is now possible between 
the server and client tasks over the new socket. This is analogous to two persons 
holding a conversation over the telephone. This may be accomplished through 
use of the procedures NETREAD, NETREAD_BUFFERED, and NETWRITE. 
The old socket still exists and can be used to accept inbound connection requests 
from other tasks. 
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When termination of communication is desired, the procedure CLOSE is 
called to close the communications channel, much like hanging up the telephone. 
The sequence of calls and their relationship in time are shown in Figure 12. 

4.1.5.2 Client Calling Sequence 

The client task must also create a TCP socket by calling SOCKET to 
establish its end of the communication channel. The client task then requests a 
connection to an existing known TCP port by calling the procedure CONNECT. 
This is similar to dialing the telephone where the telephone number relates to the 
network node address and port number of the server task. If an unknown node 
address or port number is specified, an error condition is returned indicating that 
a time-out has occurred. 

TIME 

CLIENT PROCESS 

SOCKET (S) 
CONNECT (S, SERVEFL.ADDRESS) 
TASKBUSY 

• • • 
NET.READ (S) 
NET.WRITE (S) 
CLOSE (S) 

SERVER PROCESS 

SOCKET (S) 
BIND (S, NAME) 
LISTEN (S, #_OF_REQUESTS) 
ACCEPT (S, NS) 
TASK BLOCKED 

• • • 
TASK RELEASED 
NET.WRITE (NS) 

• • • 
• • • 

NET_READ (NS) 
TASK BLOCKED 

• • • 
CLOSE (NS) 
CLOSE (S) 

Figure 12      TCP/IP Primitive Calling Sequence 

When a successful connection is established, the client and server tasks are 
able to communicate with each other. The client like the server may call 
NETREAD, NETREADBUFFERED, and NETWRITE as if two people were 
having a conversation on the telephone. When termination of communication is 
desired, the procedure CLOSE is called to close the communications channel, 
much like hanging up the telephone. 
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4.1.6 Programming Considerations 

One of the more attractive features of Ada is its tasking feature that allows 
concurrent operations to take place in the context of a single program. It would 
be desirable to maintain concurrent programs in such a way as to present a 
seamless and coherent system. It would also be desirable to maintain the Ada 
semantics of calling subprograms and task entries across program and processor 
boundaries within the software system. If the interface is designed such that the 
primitives execute in PATS format, then the interface can be used in conjunction 
with Ada's calling semantics. TCP_IO provides a PATS interface to the network 
allowing asynchronous, bidirectional communication of messages between 
programs. 

4.1.7 Ada Program Communication 

Each pair of Ada programs or processes in a software system requiring 
network communication will provide a sender task with its peer process providing 
a cooperating receiver task. Both the sender and the receiver tasks will 
communicate over the same network virtual circuit. The sender task will send 
messages to the receiver task. For heterogeneous systems, the messages must be 
converted by either the system sending the message or the system receiving the 
message. If the messages are constructed as Ada variant records with a default 
descriminant value, it is possible for the receiver task, upon receiving a message, 
to determine the type of the incoming message. It is possible for the receiver task 
to perform the appropriate action once the message type is determined. 

Messages can be coded as variant record types where the discriminant 
specifies the message type being sent or received as indicated previously. This 
makes it possible to invoke multiple types of actions in a remote Ada program, or 
process, over a single network circuit. Each cooperating network process residing 
within the software system would have both a sender task and a receiver task. In 
the case of the ACSIDL simulation, the Ada program performing the simulation 
on the VAX contained one sender task and many receiver tasks for each process, 
i.e., each Iris display system participating in the distributed application. The 
single sender task would communicate with all of the remote receiver tasks by 
maintaining a socket channels list containing one socket channel for each remote 
receiver task. Future versions of the ACSIDL simulator are anticipated to employ 
broadcast datagrams defined by user datagram protocol (UDP) (part of TCP/IP) 
to implement data sharing more efficiently. It is not necessary to maintain a 
single sender task, however. Many sender tasks, one for each remote process, 
may be implemented. The general architecture of the sender/receiver task 
communication scheme is depicted in Figure 13. 

Some of Ada's strong type checking is lost in a heterogeneous environment. 
The necessary type checking across processor bounds must be carefully 
maintained by the developer. 
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SENDER TASK 

loop 
accept SEND (MESSAGE) do 

case MESSAGE.KIND is 
when CHOICE 1 -> 

CONVERT DATA; 
WRITE (CONVERTED_MESSAGE) 

when CHOICE_2 -> 
• • • 

whenCHOICE_3-> 
• • • 

end case; 

RECEIVER TASK 

Wmr READ.BUFFERED (KIND); 
|§§|ll|iy§| case KIND Is 
^H     when CHOICE 

Www* 
i-> 

READ BUFFERED (INFO); 
DO CHOICEJ (INFO); 

when CHOICE_2 -> 

when CHOICE_3 -> 
• • • 

end case; 
end loop; 

Figure 13      Sender/Receiver Tasks 

The sender task waits to rendezvous with the application when 
communication is desired. When the rendezvous occurs, the sender task 
determines the message kind. This allows the sender to implicitly determine the 
size of the message and the representation conversion to be performed on the 
message before transmitting to the remote process. Since the Ada attribute 'size 
will return the size of the largest variant of the network message, it is necessary 
for the programmer to maintain the size of each variant component of the 
message. This can be accomplished by specifying a separate Ada type for each 
variant part. The size attribute will return the correct length of the variant 
component type. This size, plus the size of the discriminant itself, determines the 
size of the entire message to be sent. The network primitive NETWRTTE 
contains a parameter for specifying the length of the buffer to send. Specifying 
the actual length of the message (the size in bytes of the discriminant plus the size 
of the type of the information field) makes it possible to optimize the use of the 
network. The Ada attribute 'size applied to the variant record itself would return 
the size of the largest variant. This length could be used for all variants sent over 
the network and would result in correct information being received by the 
receiver. But, a lot of bytes containing no information at all would be sent and 
received, possibly consuming valuable network bandwidth. Once the data 
representation is converted and the size is determined, the message is sent over 
the network to the receiver task. The sender task then loops around and waits for 
another request (rendezvous) from the application to send another message, thus 
repeating the process described above. 

Because TCP circuits are stream-oriented pipes used for communication, 
the receiver task must operate a little differently. The receiver task will receive 
the discriminant from the network using a call to NETREAD_BUFFERED 
specifying a message length that is the size of the discriminant of the message. 
This information determines the kind of message to follow and its implicit size. 
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Once the kind of incoming message is determined, it is then possible for the 
receiver task to read the remaining portion of the message using 
NETREAD_BUFFERED by specifying a message length that represents the size 
of the information field for the determined kind of message. The data 
representation should be converted here if necessary, and the appropriate actions 
for the message received should be executed. The receiver task then loops 
around to call NETREAD_BUFFERED, again specifying a message length that is 
the size of the discriminant, and repeats the entire process described above. 

Since network messages are coded as variant record types (records with 
discriminants), the discriminant is used to describe the type of message, and the 
corresponding portion contains the information for that message kind. An 
example of a network message coded in Ada is shown below. 

type KINDs is (ALERT, SIGNAL, A, B, C); 

type ALERTs is 
record 
WHICH  : integer; 
ACTION : ACTIONs; 

end record; 

type SIGNALS is 
record 
WHICH  : integer; 
ACTION : SIGNAL_ACTIONs; 

end record; 

subtype As is integer; 

subtype Bs is float; 

subtype Cs is boolean; 

pe MESSAGES (KIND : KINDs :- AI ,ERT) is 
record 

case KIND is 
when ALERT -> ALERT INFO : ALERTs; 
when SIGNAL -> SIGNAL INFO : SIGNALs; 
when A     => A INFO : As; 
when B     -> B INFO : Bs; 
when C     -> C INFO : Cs; 

end case; - - KIND 
end record; -- MESSAGES 

-- declare the actual network message object 

NETWORK MESSAGE : MESSAGES; 
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4.1.8 Implementation of Remote Procedure Call 

Higher levels of abstraction can be placed on top of the mechanism 
described in the previous section such as remote procedure call (RFC). RPC is a 
mechanism widely used in the implementation of distributed systems. Even 
higher levels of abstraction are placed on top of the RPC mechanism such as the 
Sun network file system (NFS). In RPC the client calls a local procedure to 
perform a service. The local procedure, in turn, calls another procedure, which 
actually resides on another node of the network to perform the service required. 
The goal of RPC is to provide the services of a procedure to a client regardless of 
where the procedure actually resides. The procedure appears local to the client, 
thus making the RPC mechanism transparent. 

Figure 14 depicts a method that can be used to implement RPC on 
heterogeneous systems using the facilities of TCP/IP through the interfaces 
described in previous sections. It is shown that a client calls a local procedure, 
which is labeled the pseudoprocedure. This "procedure can in fact be an Ada 
subprogram (procedure or function) or an Ada task entry (which presents the 
same semantics as the procedure). This provides tremendous flexibility in 
implementing distributed use of all the callable facilities provided by Ada. The 
job of the pseudoprocedure is to assemble all of the parameters, if any, into a 
message. This operation is known as parameter marshalling [TAN88], It is then 
necessary for some heterogeneous systems to convert the data in the message into 
a form that is usable by the remote system. This operation is depicted by the 
convert data box. The message is then handed to the sender task that was 
described in the previous section. The sender calls the facilities of the network 
interface (in this case TCP_IO or TCPIO) to send the message to the remote 
system via a virtual circuit. It is the responsibility of the implementor of the local 
procedure to provide for the desired blocking semantics. It is possible to have the 
following client-pseudoprocedure calling semantics. 

Local procedure returns to the client after the RPC is completed by 
the remote procedure. Parameters are passed to the remote 
procedure and the resulting parameters are returned. This is a fully 
acknowledged semantic. 

Local procedure returns to the client as soon as the message is 
passed to the sender. Parameters may be passed to the remote 
procedure but none are returned. There is no acknowledgment that 
the remote procedure was truly called. 

Local procedure returns to the client after the remote procedure is 
called, but before the remote procedure completes. This provides 
an acknowledgment that the remote procedure was called. 

The message is received by a receiver task on the remote system through 
the facilities of the network interface. The receiver task is able to determine the 
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Figure 14      An Implementation of RPC in Ada 
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message kind and thus, the actions needed to be performed as described in the 
previous section. The data are converted, if necessary, to a usable form. The 
remote procedure is then called. The implementor must consider whether it is 
desirable to block the receiver task at this point. If this is undesirable, then an 
intermediate task must be placed between the receiver task and the remote 
procedure. This would allow the receiver to continue to receive incoming 
messages while the RPC is being serviced. The remote procedure can be an Ada 
subprogram or task entry just as the local procedure was. In fact, it would be 
desirable to have a one-for-one match between pseudoprocedure and remote 
procedure type.  Upon completion of the service, the return parameters are 
assembled into a message (parameter marshalling), which is sent back via the 
sender task on the remote system. 

It is possible to have many simultaneous RPCs, at various stages of 
completion, in progress at any moment in time, by any two systems connected via 
a virtual circuit. This is depicted by the multiple copies of the client, 
pseudoprocedure, and remote procedure boxes. The call can also be made by a 
client on either system to the server on the other. There is no limitation to the 
possibilities offered by this mechanism. However, responsibility for all the 
implementation details are not transparent and must be attended to carefully. 
Tools can be developed to provide the illusion of a single Ada program running 
across multiple systems. The tools would split the Ada program into multiple Ada 
programs, one targeted for each node on the network. The underlying mechanism 
needed to provide transparent subprogram calls or rendezvous could be 
implemented using the RPC mechanism presented here. An Ada runtime written 
in Ada could very well employ the mechanism described here. 
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5 CONCLUSIONS 

A taxonomy of Navy system architectures was presented showing the 
requirements for support of heterogeneous systems connected in various degrees 
of distribution, along with a high-level overview of processor interconnects such as 
memory buses, backplanes, and networks. It was seen that backplanes can 
support complex protocols that could lead one to find the backplane 
indistinguishable from a LAN. This feature becomes especially important when 
dealing with heterogeneous processors because the presence of shared memory 
may be inefficient as a medium for sharing data between processors. This feature 
would be needed for an efficient implementation of an Ada runtime across 
multiple processors. Since there is a high likelihood of being unable to find an 
Ada compiler vendor to support all conceivable target processors and even if so, 
not providing the hooks and handles in the Ada runtimes to implement a 
distributed Ada runtime across the heterogeneous suite of processors, another 
method of implementing distribution should be considered in the interest of 
conserving time and money in the development process. This does not mean that 
a standard could not be developed specifying a uniform Ada runtime interface to 
the hooks and handles needed to implement distributed Ada. Therefore, it would 
be possible for multiple vendors to supply Ada compilers and runtimes for 
different target processors and allow the application developer to supply the 
connecting pieces to the runtimes to implement the needed distribution invisibly. 
This does not, however, answer the needs of some applications that require the 
full functionality of some of the network protocols that were discussed, such as 
broadcast, or higher-level abstractions, such as distributed name services. The 
broadcast feature is not provided by the Ada runtime and thus, would be an 
extension to the language to provide a broadcast entry point call and accept. This 
could, however, be solved by some of the additions that are being, or could be, 
proposed by the ongoing Ada9X effort. 

A matrix of services versus distributed systems architecture provided an 
alternate view, which illustrated that the types of service needs differ with 
distributed systems architectures. These services do not always map to the 
features that are directly provided by the Ada runtime. Some of these needs 
could be addressed through additions to the Ada language and runtime as 
previously suggested. But, for the near future, it would be timely and fiscally 
astute to provide the means for distribution through a well-defined standard 
network interface (Ada package) employing the techniques described in this 
report. 

- 45/46 - 
Reverse Blank 



REFERENCES 

[ALN90]        Alnaes, Knut and Ernst H. Kristiansen, David B. Gustavson, 
"Scalable Coherent Interface," SLAC-PUB-5184, Stanford Linear 
Accelerator Center, Stanford, CA, January 1990. 

[AND90]       Andrews, Warren, "Futurebus+ now: Profiles Defined, Support 
Expanded," Computer Design, Vol 29, No 7, 1 April 1990, pp 22 - 26. 

[BAM88]       Bamberger, Judy and Roger Van Scoy, "Distributed Ada Real-Time 
Kernel," Proceedings of the IEEE 1988 National Aerospace & 
Electronics Conference: NAECON 88, May 1988, pp 1510 - 1516. 

[BAK86]        Baker, T. P., and K Jeffay, "A Lace for Ada's Corset," TR 86-09-05, 
Department of Computer Science, University of Washington, 
Seattle, WA, 25 October 1986. 

[BOR90]       Borrill, Paul L., "What is Futurebus+ ?," Proceedings of the 
BUSCON Conference, 14 - 16 February 1990, pp 303 - 315. 

[BRE89]        Brennan Jr., J. W., "Issues in the Design of Distributed Ada 
Programs," Masters Thesis, University of Rhode Island, August 1989. 
Also published as "Issues and Approaches in the Design of 
Distributed Ada Programs," NUSC Technical Report 6834, Naval 
Underwater Systems Center, Newport, RI, 11 October 1989. 

[CH089]       Cholerton, Andrew, "Ada For Closely Coupled Multiprocessor 
Targets," TPJ-Ada '89 Proceedings, September 1989, pp 450 - 461. 

[CLA89]        Clapp, Russell M., and Trevor Mudge, "Ada on a Hypercube," Ada 
Letters, Vol IX, No 2, 1989, pp 118 - 128. 

[DEC87]        "DECnet DIGITAL Network Architecture (Phase V)," Digital 
Equipment Corporation, Maynard, MA, September 1987. 

[ELL89]        Ellis, John R, "A Periodic Ada Control Kernel (PACK)," TRI-Ada 
'89 Proceedings, September 1989, pp 464 - 473. 

[GRE89]       Green, Daniel T. and David T. Marlow, "Application of LAN 
Standards to the Navy's Combat Systems," white paper, Engineering 
and Technology Division, Combat Systems Department, Naval 
Surface Warfare Center, Dahlgren, VA, 1989. 

47 



[GUS90]        Gustavson, David B., "Applications for the Scalable Coherent 
Interface," SLAC-PUB-5244, Stanford Linear Accelerator Center, 
Stanford, CA, April 1990. 

[JHA89]        Jha, Rakesh, "Distributed Ada - Approach and Implementation," 
TRI-Ada '89 Proceedings, September 1989, pp 439 - 449. 

[LIE86] Liebein, Edward, "The Department of Defense Software Initiative - 
A Status Report," Communications of the ACM, Vol 29, No 8, 
August 1986, pp 734 - 744. 

[LIN89] Linnig, Michael, and Donna Forinash, "Ada Tasking and Parallel 
Processors," TRI-Ada '89 Proceedings, September 1989, pp 426 - 
438. 

[LRM83]       "Ada Programming Language," ANSI/MIL-STD-1815A, 22 January 
1983. 

[RAB89]       Rabbie, Harold, "An Operating System for Real-Time Ada," 
TRI-Ada'89 Proceedings, September 1989, pp 490 - 497. 

[RAB90]        Rabbie, Harold, "Meeting Today's Requirements With Real-Time 
Ada," Proceedings of the BUSCON Conference, 14 - 16 February 
1990, pp 271 - 275. 

[SAF901]       Survivable Adaptable Fiber Optic Embedded Network I, Military 
Handbook MIL-HDBK-0034 (Draft), January 1990. 

[SAF902]       Survivable Adaptable Fiber Optic Embedded Network II, Military 
Handbook MIL-HDBK-0036 (Draft), March 1990. 

[STA871]       Stallings, William, Handbook of Computer-Communications 
Standards, Vol 1. New York: Macmillan Publishing Company, 1987. 

[STA872]       Stallings, William, Handbook of Computer-Communications 
Standards, Vol 2. New York: Macmillan Publishing Company, 1987. 

[STA88]        Stallings, William, Paul Mockapetris, Sue Mcleod, and Tony Michel, 
Handbook of Computer-Communications Standards, Vol 3. New 
York: Macmillan Publishing Company, 1988. 

[STE88] Stevens, Bruce W., "DECnet Ada Binding", Technical Memorandum 
No. 88-2152, Naval Underwater Systems Center, Newport, RI, 
28 September 1989. 

48 



[STE89] Stevens, Bruce W. and Pamela R. Perras, "An Ada Interface to 
Networking with TCP/IP", Technical Memorandum No. 89-2036, 
Naval Underwater Systems Center, Newport, RI, 19 April 1989. 

[TAN88]        Tananbaum, Andrew S., Computer Networks, 2nd ed. New Jersey: 
Prentice-Hall, 1988. 

[VAN89]       Van Scoy, Roger, Judy Bamberger, and Robert Firth, "An Overview 
of DARK," Ada Letters, November/December 1989, pp 91 - 101. 

[XTP90]        "XTP Protocol Definition, Revision 3.5," PEI 90-120, Protocol 
Engines Inc., 10 September 1990. 

- 49/50 - 
Reverse Blank 



BIBLIOGRAPHY 

"Ada Programming Language," ANSI/MIL-STD-1815A, 22 January 1983. 

Alnaes, Knut and Ernst H. Kristiansen, David B. Gustavson, "Scalable Coherent 
Interface," SLAC-PUB-5184, Stanford Linear Accelerator Center, Stanford, 
CA, January 1990. 

Andrews, Warren, "Futurebus+ Now: Profiles Defined, Support Expanded," 
Computer Design, Vol 29, No 7, 1 April 1990, pp 22 - 26. 

Bamberger, Judy and Roger Van Scoy, "Distributed Ada Real-Time Kernel," 
Proceedings of the IEEE 1988 National Aerospace & Electronics Conference: 
NAECON88, May 1988, pp 1510 - 1516. 

Baker, T. P., and K. Jeffay, "A Lace for Ada's Corset/' TR 86-09-05, Department 
of Computer Science, University of Washington, Seattle, WA, 25 October 
1986. 

Baker, T. P., "A Corset for Ada," Version 1.1, TR 86-09-05, Department of 
Computer Science, University of Washington, Seattle, WA, 8 February 
1987. 

Borrill, Paul L., "What is Futurebus+ ?," Proceedings of the BUSCON Conference, 
14 - 16 February 1990. pp 303 - 315. 

Brennan Jr., J. W., "Issues in the Design of Distributed Ada Programs," Masters 
Thesis, University of Rhode Island, August 1989. Also published as "Issues 
and Approaches in the Design of Distributed Ada Programs," NUSC 
Technical Report 6834, Naval Underwater Systems Center, Newport, RI, 
11 October 1989. 

Carver, Richard and K. C. Tai, "Deterministic Execution Testing of Concurrent 
Ada Programs," TPJ-Ada '89 Proceedings, September 1989, pp 528 - 544. 

Cholerton, Andrew, "Ada For Closely Coupled Multiprocessor Targets," TPJ-Ada 
'89 Proceedings, September 1989, pp 450 - 461. 

Clapp, Russell M., Louis Duchesneau, Richard A Volz, Trevor N. Mudge, and 
Timothy Schultze, "Toward Real-Time Performance Benchmarks For Ada," 
Communications of the ACM, Vol 29, No 8, August 1986. 

Clapp, Russell M., and Trevor Mudge, "Ada on a Hypercube," Ada Letters, Vol 
IX, No 2, 1989, pp 118 - 128. 

51 



r, 

Clapp, Russell M., and Trevor Mudge, "Parallel and Distributed Issues," Ada 
Letters Special Edition -- Ada Performance Issues, Vol X, No 3, 1990. pp 
33 - 37. 

Cohen, Norman H., Ada as a Second Language, New York: McGraw-Hill, 1986. 

Day, John D. and Hubert Zimmermann, "The OSI Reference Model," Proceedings 
of the IEEE, Vol 71, No 12., December 1983. 

"DECnet DIGITAL Network Architecture (Phase V)," Digital Equipment 
Corporation, September 1987. 

De Francesco N., G. Perego, G. Vaglini, and M. Vanneschi, "Framework For 
Data Flow Distributed Processing," Calcolo, Vol 17, No 4., October 1980, 
pp 333 - 363. 

Dowling, E. J., 'Testing Distributed Ada Programs," TRI-Ada '89 Proceedings, 
September 1989, pp 517 - 527. 

Ellis, John R., "A Periodic Ada Control Kernel (PACK)," TRI-Ada '89 
Proceedings, September 1989, pp 464 - 473. 

Fischer, Michael J., Nancy A Lynch, and Michael S. Paterson, "Impossibility of 
Distributed Consensus with One Faulty Process," Journal of the ACM, Vol 
32, No 2, April 1985, pp 374 - 382. 

Green, Daniel T. and David T. Marlow, "Application of LAN Standards to the 
Navy's Combat Systems," white paper, Engineering and Technology 
Division, Combat Systems Department, Naval Surface Warfare Center, 
Dahlgren, VA, 1989. 

Griest, Thomas E., "Limitations on the Portability of Real Time Ada Programs," 
TRI-Ada '89 Proceedings, September 1989, pp 474 - 489. 

Gustavson, David B., "Applications for the Scalable Coherent Interface," SLAC- 
PUB-5244, Stanford Linear Accelerator Center, Stanford, CA, April 1990. 

Inverardi, P., F. Mazzanti, and C. Montangero, "The Use of Ada in the Design of 
Distributed Systems," Proceedings of the Ada International Conference, Paris, 
14 - 16 May 1985, pp 85 - 96. 

Inter-Process Communication Primer, Sun Microsystems, Mountain View, CA, 
17 February 1986. 

Jha, Rakesh, "Distributed Ada - Approach and Implementation," TRI-Ada '89 
Proceedings, September 1989, pp 439 - 449. 

52 



Kenah, Lawrence J., and Simon F. Bate, VAX/VMS Internals and Data Structures, 
Digital Press, Maynard, MA, 1984. 

Kim, K. H., "Approaches to Mechanization of the Conversation Scheme Based on 
Monitors," IEEE Transactions, Vol SE-8, No 3, May 1982, pp 189 - 197. 

Lamport, L., "The Weak Byzantine Generals Problem," Journal of the ACM, Vol 
30, No 3, July 1983, pp 668 - 676. 

Liebein, Edward, "The Department of Defense Software Initiative - A Status 
Report," Communications of the ACM, Vol 29, No 8, August 1986, pp 734 - 
744. 

Linnig, Michael, and Donna Forinash, "Ada Tasking and Parallel Processors," 
TRI-Ada '89 Proceedings, September 1989, pp 426 - 438. 

Mao, T. William, and Raymond T. Yeh, "Communication Port: A Language 
Concept for Concurrent Programming," IEEE Transactions on Software 
Engineering, Vol SE-6, No 2., March 1980, pp 194 - 204. 

Nielsen, Kjell W. and Ken Shumate, "Designing Large Real-Time Systems with 
Ada," Communications of the ACM, Vol 30, No 8, August 1987, pp 695 - 
715. 

Notkin, David, Norman Hutchinson, Jan Sansislo, and Michael Schwartz, 
"Heterogeneous Computing Environments: Report on the ACM SIGOPS 
Workshop on Accommodating Heterogeneity," Communications of the 
ACM, Vol 30, No 2, February 1987, pp 132 - 140. 

Pease, M., R. Shostak, and L. Lamport, "Reaching Agreement in the Presence of 
Faults," Journal of the ACM, Vol 27, No 2, April 1980, pp 228 - 234. 

Perrin, Mark, "What Does Ada Offer The Embedded Systems Programmer?," 
Proceedings of the BUSCON Conference, 14 - 16 February 1990, pp 291 - 
301. 

Rabbie, Harold, "An Operating System for Real-Time Ada," TRI-Ada '89 
Proceedings, September 1989, pp 490 - 497. 

Rabbie, Harold, "Meeting Today's Requirements With Real-Time Ada," 
Proceedings of the BUSCON Conference, February 14 - 16, 1990, pp 271 - 
275. 

Royce, Walker, "Reliable, Reusable Ada Components for Constructing Large, 
Distributed Multi-Task Networks: Network Architecture Services (NAS)," 
TRI-Ada '89 Proceedings, September 1989, pp 500 - 516. 

53 



Survivable Adaptable Fiber Optic Embedded Network I, Military Handbook MIL- 
HDBK-0034 (Draft), January 1990. 

Survivable Adaptable Fiber Optic Embedded Network II, Military Handbook MIL- 
HDBK-0036 (Draft), March 1990. 

Sammet, Jean E., "Why Ada is not Just Another Programming Language," 
Communication of the ACM, Vol 29, No 8, August 1986, pp 722 - 732. 

Sauer, Charles H., and K. Mani Chandy, Computer Systems Performance Modeling, 
New Jersey: Prentice-Hall, 1981. 

Schonberg, Edith, and Edmond Schonberg, "Highly Parallel Ada - Ada on an 
Ultracomputer," Proceedings of the Ada International Conference, Paris, 
14-16 May 1985, pp 58 - 71. 

Sha, Lui, and John B. Goodenough, "Real-Time Scheduling Theory and Ada," 
Technical Report CMU/SEI-89-TR-14, ESD-TR-89-22, Software 
Engineering Institute, Pennsylvania, April 1989. 

Shin, Kang G., and Mark E. Epstein, "Communication Primitives for a Distributed 
Multi-Robot System," IEEE International Conference on Robotics and 
Automation, 25 - 28 March 1985, pp 910 - 917. 

Stallings, William, Handbook of Computer-Communications Standards, Vol 1. New 
York: Macmillan Publishing Company, 1987. 

Stallings, William, Handbook of Computer-Communications Standards, Vol 2. New 
York: Macmillan Publishing Company, 1987. 

Stallings, William, Paul Mockapetris, Sue Mcleod, and Tony Michel, Handbook of 
Computer-Communications Standards, Vol 3. New York:  Macmillan 
Publishing Company, 1988. 

Stevens, Bruce W., "DECnet Ada Binding," Technical Memorandum No. 88-2152, 
Naval Underwater Systems Center, Newport, RI, 28 September 1989. 

Stevens, Bruce W. and Pamela R. Perras, "An Ada Interface to Networking with 
TCP/IP," Technical Memorandum No. 89-2036, Naval Underwater Systems 
Center, Newport, RI, 19 April 1989. 

Tananbaum, Andrew S., Computer Networks, New Jersey: Prentice-Hall, 1981. 

Tananbaum, Andrew S., Computer Networks, 2nd ed. New Jersey: Prentice-Hall, 
1988. 

54 



4* 

Van Scoy, Roger, Judy Bamberger, and Robert Firth, "An Overview of DARK," 
Ada Letters, November/December 1989, pp 91 - 101. 

Volz, Richard A-, Trevor N. Mudge, Arch W. Naylor, and John H. Mayer, "Some 
Problems in Distributing Real-Time Ada Programs Across Machines," 
Proceedings of the Ada International Conference, Paris, 14 - 16 May 1985, pp 
72 - 84. 

Wegner, Peter, and Scott A. Smolka, "Processes, Tasks, and Monitors: A 
Comparative Study of Concurrent Programming Primitives," IEEE 
Transactions on Software Engineering, Vol SE-9, No 4, July 1983, pp 446 - 
462. 

Whiddett, Dick, "Distributed programs: an overview of implementations," 
Microprocessors and Microsystems, Vol 10, No 9, November 1986, pp 475 - 
484.     . 

Williamson, Ronald, and Ellis Horowitz, "Concurrent Communication and 
Synchronization Mechanisms," Software-Practice and Experience, Vol 14, No 
2, February 1984, pp 135 - 151. 

XTP Protocol Definition, Revision 3.5, Protocol Engines Inc., PEI 90-120, 10 
September 1990. 

Zhou, Chang-Lin, and Zhou Gang. "A New Language Feature For Concurrent 
Programming," International Symposium on New Directions in Computing, 
12-14 August 1985, pp 311 - 317. 

- 55/56 - 
Reverse Blank 



^^^"^^^^^^~ 

INITIAL DISTRffiUnON LIST 

Addressee • No. of Copies 

SPAWAR (231 (1), 2312 (4), 2312-Chan (1)) 6 

CNA 1 

DTIC 1 


